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CLUSTERING, WHAT IS IT?

▸ Taking a set of objects and grouping together those that 
are most alike, segmenting the objects into new sub-
groups. 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MACHINE LEARNING

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

Use known values to 
predict for new data

Find out about your 
current data and it’s 
patterns



CLUSTERING, WHAT IS IT?

▸ Taking a set of objects and grouping together those that 
are most alike, segmenting the objects into new sub-
groups. 
 
 
 
 

▸ Multiple approaches to the clustering problem: 

▸ Hierarchical Clustering 

▸ Partitional  Clustering (Our focus today)
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MACHINE LEARNING

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

• REGRESSION 
• CLASSIFICATION

• CLUSTERING



CLUSTERING, WHAT IS IT?

HOW MANY CLUSTERS?
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By eye, we pick out two clusters fairly easily. 

What if I wasn’t clustering by proximity?
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By Color.
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By Shape.

We want an algorithm that can take information about 
members in a set and find these clusters on it’s own. We 
also want to be able to classify by many variables at once.



K-MEANS

▸ One of the most common clustering algorithms is known as 
k-means clustering.  

▸ The idea is to partition the input set of points into k different 
clusters, based on some distance function. In the simplest 
form, we’ll use Euclidean distance as our f(x); and we’ll use 
features of the data set to compute the distance. We want to 
find clusters that minimize the (squared) distance from the 
mean value of the cluster to the members of the cluster.  

▸ This can be done by calculating the distance in the space for 
each point relative to the cluster center; as shown in 
summation for here: 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https://en.wikipedia.org/wiki/Euclidean_distance


K-MEANS - HANDS ON DEMO 9

Let’s visualize the algorithm: 

X

Y
We start with some set of data 
distributed throughout a 
space. Each data point has 2 
defining features, its X and Y 
coordinates. Now we want to 
group them into clusters 
based on this X,Y distance. 

Note: it doesn’t have to be 
just X,Y. It can be any number 
of dimensions!

STAGE 1: INITIALIZATION
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To initialize the algorithm, we 
know that we need to find k 
clusters. For this example, let’s 
say k = 3 (more on choosing k 
later). 

The first step is to choose k 
points in the space to act as the 
cluster seeds. There are 
multiple ways to do this, but 
two common ones are: 
1) Randomly choose k points 
from the set to seed the clusters 
2) Randomly set each point to 
be in a cluster, then calculate 
the mean value for each cluster.X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm: 

K-MEANS - HANDS ON DEMO
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X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm: 

Let’s randomly choose 
members of the set to seed 
the clusters. This is called 
Forgy initialization.  There are 
smarter ways to do this, but 
we can get to that later. 

Notation: 

       = Cluster Mean/Seed 
(midpoint of all the data) 

       = Data point in the set. 

Colors represent different 
clusters.

K-MEANS - HANDS ON DEMO
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Now we compute the 
distance from each point to 
each mean and assign the 
point to the cluster of the 
closest seed.

X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm: 

NX

i=1

p
(xi � µ)2

K-MEANS - HANDS ON DEMO
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X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm: 

K-MEANS - HANDS ON DEMO

Now we compute the 
distance from each point to 
each mean and assign the 
point to the cluster of the 
closest seed.

NX

i=1

p
(xi � µ)2
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X

Y

Let’s visualize the algorithm: 

Finally, compute the mean 
position for each cluster and 
reassign the cluster seed to 
that point.  

Now we’ve initialized all 3 
clusters.

STAGE 1: INITIALIZATION

K-MEANS - HANDS ON DEMO
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STAGE 2: MINIMIZATION
Let’s visualize the algorithm: 

Now we enter the iterative 
part of the procedure, where 
we attempt to minimize the 
distance between the cluster 
means and all of their 
constituent points. To do this, 
we recompute the distance 
between each point and all 
the means.  

Is the point closer to the mean 
of a different cluster than its 
current one? Switch clusters!

X

Y

K-MEANS - HANDS ON DEMO
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STAGE 2: MINIMIZATION
Let’s visualize the algorithm: 
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X

Y

K-MEANS - HANDS ON DEMO
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STAGE 2: MINIMIZATION
Let’s visualize the algorithm: 

Now that a point has switched 
clusters, the means aren’t 
correct any more. Update the 
means, and try again.

X

Y

K-MEANS - HANDS ON DEMO
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STAGE 2: MINIMIZATION
Let’s visualize the algorithm: 

We iterate this step until we 
reach a stage where no 
members are changing 
between clusters. This 
convergence point is 
guaranteed to exist and k-
means is generally fast at 
reaching it.

X

Y

K-MEANS - HANDS ON DEMO



IN PRACTICE - A SIMPLE 2D CASE 20

Note: You’ll want to flip page to page, not scroll, to get the full effect.
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LET’S PSEUDOCODE! 29

data = getData(“theseAreDataPoints.csv”)

for i in range(0,k):

clusters.append[new cluster]

clusters[i].setMean(random.choice(data))

for point in data:

findCluster(point, clusters)

for c in cluster:

c.mean = computeMeanPosition(c)

STAGE 1: INITIALIZATION



STAGE 2: MINIMIZATION
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while previousClustering != currentClustering:

c.previousClustering = c.currentClustering

c.currentClustering = []

for c in cluster:

c.mean = computeMeanPosition(c)

for point in data:

n = findCluster(point,clusters)

cluster[n].addPoint(point)

LET’S PSEUDOCODE!



THE CHALLENGES OF K-MEANS

▸ Initialization matters. The algorithm is guaranteed to 
converge, but it’s not guaranteed to find a global 
minimum. 
• What if we choose our starting points more optimally? 
‣ kMeans++ 

• How do we test if we are at the optimal solution? 
‣ Advanced topics: Intertia, Silhouette Scores 

‣ Curse of dimensionality 
• If we go from 2D to 27D, clustering becomes a really 

hard problem. Everything is far from everything in 27D. 
• Possible solution: Dimensionality reduction (PCA, etc)
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https://en.wikipedia.org/wiki/K-means%2B%2B


THE CHALLENGES OF K-MEANS

‣ Naturally finds spherical clusters of data.  
‣ Can’t cluster by density, since it’s always minimizing a 

distance function to the mean. 
‣ How do we choose the number of clusters if we don’t 

know a priori or via domain knowledge? 
• Finding k (number of clusters) is non-trivial, but there are 

some good rules of thumb (next pages)
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CHOOSING K 33

k = 1 k = 2

k = 3 k = 4



CHOOSING K 34

k = 5 k = 6

k = 7 k = 8



CHOOSING K 35

There are many ways to choose k, but one of the easiest is to plot 
the total squared distance between each point and the mean of 
it’s cluster. You can look for an elbow in the distribution as a 
function of number of clusters.  

NOTE: This is just a guide. The elbow method is totally heuristic 
and you can use it as a starting point for your data set and 
evaluate from there.



K-MEANS: A SUMMARY

▸ K-means is an unsupervised learning algorithm that does 
clustering.  

▸ The general rules: make clusters, assign points to those 
clusters by distance, (recalculate the centers with the new 
points, and reassign points)*∞ until convergence.
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▸ Sample Uses: 

• Finding optimal middle 
points in geospatial data 

• Dimensionality Reduction 

• Finding Cancer!?  
Dubey AK, Gupta U, Jain S“Analysis of k-
means clustering approach on the breast 
cancer Wisconsin dataset.” Int J Comput 
Assist Radiol Surg. 2016 Nov;11(11):
2033-2047. Epub 2016 Jun 16.
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▸ There are some challenges with k-means and some built in 
assumptions.

• Do you know k? 

• Global vs local minimum? 

• Are your clusters hyper-
spherical? 

• Are some of your clusters 
really loosely grouped while 
others are not? 

• Dimensionality, a blessing 
and a curse.

But it’s still a fast and powerful tool for drawing conclusions and exploring 
data; assuming you understand what it assumes you understand.



SCIKIT-LEARN - ONCE YOU UNDERSTAND THE BLACK BOX 38

from sklearn.cluster import KMeans

estimator = KMeans(n_clusters=k, n_init=10, 
init=‘k-means++')

clusters = estimator.fit_predict(data)

means = estimator.cluster_centers_

Details:
‣ Lots of initialization options, but most important ones are number 

of clusters, the initialization scheme, and n_init. 
• Initialization schemes are smarter ways to pick your first points. 

k-means++ is a way of spreading out the initial cluster seeds, 
which results in more reliability in finding the optimal solution 

• n_init is the number of times the algorithm is re-initialized and 
run. The returned result is the most stable solution out of the set 
of solutions. 

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


CHALLENGE TIME
▸ Generate some 3D data using numpy’s random.normal function. 

Spread the data out into some set of N clusters. Now use sci-kit to run 
the k-means function. Plot your data using matplotlib’s 3D plotting, and 
make sure to color each point as part of a cluster.
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▸ Try playing with different initializations. 
What happens if n_init = 1 for close 
clusters? Try running again with a different 
random number seed. 

▸ Try changing how you generate the data 
such that all the clusters are overlapping. 
Does k-means still work? 

▸ Can you smear the data in a way that makes 
k-means return ugly or non-intuitive 
clusters? 

▸ What happens if you make one of the 
generated clusters only have 1 or 2 points 
and the rest have 100s?



SOURCES

▸ Island Image (pg 1): http://www.simflight.com/wp-
content/uploads/2012/11/World-islands.jpg 

▸ K-means color reduction: http://docs.opencv.org/3.0-beta/
doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/
py_kmeans_opencv.html  

▸ K-means assumption plots: http://scikit-learn.org/stable/
auto_examples/cluster/
plot_kmeans_assumptions.html#sphx-glr-auto-examples-
cluster-plot-kmeans-assumptions-py 
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