
K-MEANS CLUSTERING
Z. W. MILLER

1

CLUSTERING, WHAT IS IT?

▸ Taking a set of objects and grouping together those that
are most alike, segmenting the objects into new sub-
groups. 
 
 
 

2

MACHINE LEARNING

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

Use known values to
predict for new data

Find out about your
current data and it’s
patterns

CLUSTERING, WHAT IS IT?

▸ Taking a set of objects and grouping together those that
are most alike, segmenting the objects into new sub-
groups. 
 
 
 
 

▸ Multiple approaches to the clustering problem:

▸ Hierarchical Clustering

▸ Partitional Clustering (Our focus today)

3

MACHINE LEARNING

SUPERVISED
LEARNING

UNSUPERVISED
LEARNING

• REGRESSION
• CLASSIFICATION

• CLUSTERING

CLUSTERING, WHAT IS IT?

HOW MANY CLUSTERS?

4

CLUSTERING, WHAT IS IT?

HOW MANY CLUSTERS?

5

By eye, we pick out two clusters fairly easily.

What if I wasn’t clustering by proximity?

CLUSTERING, WHAT IS IT?

HOW MANY CLUSTERS?

6

By Color.

CLUSTERING, WHAT IS IT?

HOW MANY CLUSTERS?

7

By Shape.

We want an algorithm that can take information about
members in a set and find these clusters on it’s own. We
also want to be able to classify by many variables at once.

K-MEANS

▸ One of the most common clustering algorithms is known as
k-means clustering.

▸ The idea is to partition the input set of points into k different
clusters, based on some distance function. In the simplest
form, we’ll use Euclidean distance as our f(x); and we’ll use
features of the data set to compute the distance. We want to
find clusters that minimize the (squared) distance from the
mean value of the cluster to the members of the cluster.

▸ This can be done by calculating the distance in the space for
each point relative to the cluster center; as shown in
summation for here: 

8

https://en.wikipedia.org/wiki/Euclidean_distance

K-MEANS - HANDS ON DEMO 9

Let’s visualize the algorithm:

X

Y
We start with some set of data
distributed throughout a
space. Each data point has 2
defining features, its X and Y
coordinates. Now we want to
group them into clusters
based on this X,Y distance.

Note: it doesn’t have to be
just X,Y. It can be any number
of dimensions!

STAGE 1: INITIALIZATION

10

To initialize the algorithm, we
know that we need to find k
clusters. For this example, let’s
say k = 3 (more on choosing k
later).

The first step is to choose k
points in the space to act as the
cluster seeds. There are
multiple ways to do this, but
two common ones are: 
1) Randomly choose k points
from the set to seed the clusters 
2) Randomly set each point to
be in a cluster, then calculate
the mean value for each cluster.X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm:

K-MEANS - HANDS ON DEMO

11

X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm:

Let’s randomly choose
members of the set to seed
the clusters. This is called
Forgy initialization. There are
smarter ways to do this, but
we can get to that later.

Notation:

 = Cluster Mean/Seed
(midpoint of all the data)

 = Data point in the set.

Colors represent different
clusters.

K-MEANS - HANDS ON DEMO

12

Now we compute the
distance from each point to
each mean and assign the
point to the cluster of the
closest seed.

X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm:

NX

i=1

p
(xi � µ)2

K-MEANS - HANDS ON DEMO

13

X

Y

STAGE 1: INITIALIZATION
Let’s visualize the algorithm:

K-MEANS - HANDS ON DEMO

Now we compute the
distance from each point to
each mean and assign the
point to the cluster of the
closest seed.

NX

i=1

p
(xi � µ)2

14

X

Y

Let’s visualize the algorithm:

Finally, compute the mean
position for each cluster and
reassign the cluster seed to
that point.

Now we’ve initialized all 3
clusters.

STAGE 1: INITIALIZATION

K-MEANS - HANDS ON DEMO

15

STAGE 2: MINIMIZATION
Let’s visualize the algorithm:

Now we enter the iterative
part of the procedure, where
we attempt to minimize the
distance between the cluster
means and all of their
constituent points. To do this,
we recompute the distance
between each point and all
the means.

Is the point closer to the mean
of a different cluster than its
current one? Switch clusters!

X

Y

K-MEANS - HANDS ON DEMO

16

STAGE 2: MINIMIZATION
Let’s visualize the algorithm:

Now we enter the iterative
part of the procedure, where
we attempt to minimize the
distance between the cluster
means and all of their
constituent points. To do this,
we recompute the distance
between each point and all
the means.

Is the point closer to the mean
of a different cluster than its
current one? Switch clusters!

X

Y

K-MEANS - HANDS ON DEMO

17

STAGE 2: MINIMIZATION
Let’s visualize the algorithm:

Now we enter the iterative
part of the procedure, where
we attempt to minimize the
distance between the cluster
means and all of their
constituent points. To do this,
we recompute the distance
between each point and all
the means.

Is the point closer to the mean
of a different cluster than its
current one? Switch clusters!

X

Y

K-MEANS - HANDS ON DEMO

18

STAGE 2: MINIMIZATION
Let’s visualize the algorithm:

Now that a point has switched
clusters, the means aren’t
correct any more. Update the
means, and try again.

X

Y

K-MEANS - HANDS ON DEMO

19

STAGE 2: MINIMIZATION
Let’s visualize the algorithm:

We iterate this step until we
reach a stage where no
members are changing
between clusters. This
convergence point is
guaranteed to exist and k-
means is generally fast at
reaching it.

X

Y

K-MEANS - HANDS ON DEMO

IN PRACTICE - A SIMPLE 2D CASE 20

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 21

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 22

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 23

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 24

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 25

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 26

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 27

Note: You’ll want to flip page to page, not scroll, to get the full effect.

IN PRACTICE - A SIMPLE 2D CASE 28

Note: You’ll want to flip page to page, not scroll, to get the full effect.

LET’S PSEUDOCODE! 29

data = getData(“theseAreDataPoints.csv”)

for i in range(0,k):

clusters.append[new cluster]

clusters[i].setMean(random.choice(data))

for point in data:

findCluster(point, clusters)

for c in cluster:

c.mean = computeMeanPosition(c)

STAGE 1: INITIALIZATION

STAGE 2: MINIMIZATION

30

while previousClustering != currentClustering:

c.previousClustering = c.currentClustering

c.currentClustering = []

for c in cluster:

c.mean = computeMeanPosition(c)

for point in data:

n = findCluster(point,clusters)

cluster[n].addPoint(point)

LET’S PSEUDOCODE!

THE CHALLENGES OF K-MEANS

▸ Initialization matters. The algorithm is guaranteed to
converge, but it’s not guaranteed to find a global
minimum.
• What if we choose our starting points more optimally?
‣ kMeans++

• How do we test if we are at the optimal solution?
‣ Advanced topics: Intertia, Silhouette Scores

‣ Curse of dimensionality
• If we go from 2D to 27D, clustering becomes a really

hard problem. Everything is far from everything in 27D.
• Possible solution: Dimensionality reduction (PCA, etc)

31

https://en.wikipedia.org/wiki/K-means%2B%2B

THE CHALLENGES OF K-MEANS

‣ Naturally finds spherical clusters of data.
‣ Can’t cluster by density, since it’s always minimizing a

distance function to the mean.
‣ How do we choose the number of clusters if we don’t

know a priori or via domain knowledge?
• Finding k (number of clusters) is non-trivial, but there are

some good rules of thumb (next pages)

32

CHOOSING K 33

k = 1 k = 2

k = 3 k = 4

CHOOSING K 34

k = 5 k = 6

k = 7 k = 8

CHOOSING K 35

There are many ways to choose k, but one of the easiest is to plot
the total squared distance between each point and the mean of
it’s cluster. You can look for an elbow in the distribution as a
function of number of clusters.

NOTE: This is just a guide. The elbow method is totally heuristic
and you can use it as a starting point for your data set and
evaluate from there.

K-MEANS: A SUMMARY

▸ K-means is an unsupervised learning algorithm that does
clustering.

▸ The general rules: make clusters, assign points to those
clusters by distance, (recalculate the centers with the new
points, and reassign points)*∞ until convergence.

36

▸ Sample Uses:

• Finding optimal middle
points in geospatial data

• Dimensionality Reduction

• Finding Cancer!?  
Dubey AK, Gupta U, Jain S“Analysis of k-
means clustering approach on the breast
cancer Wisconsin dataset.” Int J Comput
Assist Radiol Surg. 2016 Nov;11(11):
2033-2047. Epub 2016 Jun 16.

K-MEANS: A SUMMARY 37

▸ There are some challenges with k-means and some built in
assumptions.

• Do you know k?

• Global vs local minimum?

• Are your clusters hyper-
spherical?

• Are some of your clusters
really loosely grouped while
others are not?

• Dimensionality, a blessing
and a curse.

But it’s still a fast and powerful tool for drawing conclusions and exploring
data; assuming you understand what it assumes you understand.

SCIKIT-LEARN - ONCE YOU UNDERSTAND THE BLACK BOX 38

from sklearn.cluster import KMeans

estimator = KMeans(n_clusters=k, n_init=10,
init=‘k-means++')

clusters = estimator.fit_predict(data)

means = estimator.cluster_centers_

Details:
‣ Lots of initialization options, but most important ones are number

of clusters, the initialization scheme, and n_init.
• Initialization schemes are smarter ways to pick your first points.

k-means++ is a way of spreading out the initial cluster seeds,
which results in more reliability in finding the optimal solution

• n_init is the number of times the algorithm is re-initialized and
run. The returned result is the most stable solution out of the set
of solutions.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

CHALLENGE TIME
▸ Generate some 3D data using numpy’s random.normal function.

Spread the data out into some set of N clusters. Now use sci-kit to run
the k-means function. Plot your data using matplotlib’s 3D plotting, and
make sure to color each point as part of a cluster.

39

▸ Try playing with different initializations.
What happens if n_init = 1 for close
clusters? Try running again with a different
random number seed.

▸ Try changing how you generate the data
such that all the clusters are overlapping.
Does k-means still work?

▸ Can you smear the data in a way that makes
k-means return ugly or non-intuitive
clusters?

▸ What happens if you make one of the
generated clusters only have 1 or 2 points
and the rest have 100s?

SOURCES

▸ Island Image (pg 1): http://www.simflight.com/wp-
content/uploads/2012/11/World-islands.jpg

▸ K-means color reduction: http://docs.opencv.org/3.0-beta/
doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/
py_kmeans_opencv.html

▸ K-means assumption plots: http://scikit-learn.org/stable/
auto_examples/cluster/
plot_kmeans_assumptions.html#sphx-glr-auto-examples-
cluster-plot-kmeans-assumptions-py

40

http://www.simflight.com/wp-content/uploads/2012/11/World-islands.jpg
http://www.simflight.com/wp-content/uploads/2012/11/World-islands.jpg
http://www.simflight.com/wp-content/uploads/2012/11/World-islands.jpg
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_kmeans/py_kmeans_opencv/py_kmeans_opencv.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py

